Metrics Fluctuational Theory

نویسنده

  • F. Kamalov
چکیده

It is supposed the alternative to Quantum Mechanics Axiomatic. Fluctu-ational Theory save the Mathematics of Quantum Mechanic without change, naming this Mathematics as Method of Indirect Computation. Fluctuational Theory is delete the axiomatic of Quantum Mechanics and replaces it by the assumption of Gravitational Noise. This assumption is connects the Method of Indirect Computation to the Classical Physics. Physical fluctuations of classical gravitational fields are mathematically expressed through geometric fluctuations of metrics of Riemann Space. Metrics Fluctuational Theory and Quantum Mechanic is describe the classical experiment of electrons interference by two different way. Pacs 03.65*

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluctuational transitions across locally-disconnected and locally-connected fractal basin boundaries

We study fluctuational transitions in a discrete dynamical system that has two co-existing attractors in phase space, separated by a fractal basin boundary which may be either locally-disconnected or locally-connected. It is shown that, in each case, transitions occur via an accessible point on the boundary. The complicated structure of paths inside the locally-disconnected fractal boundary is ...

متن کامل

ar X iv : n lin / 0 30 20 14 v 1 [ nl in . C D ] 6 F eb 2 00 3 Fluctuational transitions through a fractal basin boundary

Fluctuational transitions between two co-existing chaotic attractors, separated by a fractal basin boundary, are studied in a discrete dynamical system. It is shown that the mechanism for such transitions is determined by a hierarchy of homoclinic points. The most probable escape path from the chaotic attractor to the fractal boundary is found using both statistical analyses of fluctuational tr...

متن کامل

Fluctuational transitions across different kinds of fractal basin boundaries.

We study fluctuational transitions in discrete and continuous dynamical systems that have two coexisting attractors in phase space, separated by a fractal basin boundary which may be either locally disconnected or locally connected. Theoretical and numerical evidence is given to show that, in each case, the transition occurs via a unique accessible point on the boundary, both in discrete system...

متن کامل

Fluctuational Escape from Chaotic Attractors

Fluctuational transitions between two coexisting attractors are investigated. Two different systems are considered: the periodically driven nonlinear oscillator and the two-dimensional map introduced by Holmes. These two systems have smooth and fractal boundaries, respectively, separating their coexisting attractors. It is shown that, starting from a cycle embedded in the chaotic attractor, the...

متن کامل

Optimal Fluctuations and the Control of Chaos

The energy-optimal migration of a chaotic oscillator from one attractor to another coexisting attractor is investigated via an analogy between the Hamiltonian theory of fluctuations and Hamiltonian formulation of the control problem. We demonstrate both on physical grounds and rigorously that the Wentzel-Freidlin Hamiltonian arising in the analysis of fluctuations is equivalent to Pontryagin’s ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002